Jump to content

sova

Local
  • Posts

    2793
  • Joined

  • Last visited

  • Days Won

    7

Everything posted by sova

  1. Особенности цепей постоянного напряжения Проверка характеристик передачи напряжения различных рассмотренных цепей постоянного напряжения выявляет интересный факт: в каждом случае, асимметричном или симметричном, существует широкая область перекрытия на частоте шкалы шириной около четырех октав между точками -12 дБ соответствующих пар функций. Это общее правило справедливо для всех исследованных откликов; его можно преодолеть, только допустив нежелательно большие пики или разность фаз. Таким образом, крутой наклон конечного среза не помогает существенно уменьшить область перекрытия, где оба динамика должны работать удовлетворительно и иметь близкие характеристики. В общем случае симметричных цепей каждый динамик должен быть рассчитан на работу на две октавы ниже номинальной частоты кроссовера - на обоих концах своего диапазона для среднечастотного динамика. В четырехоктавном диапазоне перекрытия характеристики динамиков должны быть близки или должны быть сделаны такими с помощью эквалайзеров. Если необходимо быстро отключить один из динамиков из-за неконтролируемой неравномерности отклика, это можно сделать, используя несимметричную цепь. Но в этом случае другой динамик должен иметь нормальный отклик на три октавы или более за пределами номинальной частоты кроссовера. РЕАЛИЗАЦИЯ ЦЕПЕЙ ПОСТОЯННОГО НАПРЯЖЕНИЯ Учитывая полиномиальные выражения для желаемого отклика, такие как в предыдущем разделе, цепевые схемы могут быть разработаны с использованием методов синтеза схем [10], [11]. Например, симметричный отклик второго порядка на рис. 7 требует низкочастотной функции Gl(sn) = (1+asn)/(1+asn+as²+Sn³). его функция может быть преобразована в Таким образом, одним из способов синтеза цепевой функции является каскадное соединение полочной цепи с другой цепью, дающей демпфированную пару полюсов, как показано в верхней части рис. 9. Дополнительная функция высоких частот может быть аналогичным образом сгенерирована каскадной полочной цепью и фильтром высоких частот второго порядка. Однако, если низкочастотная характеристика может быть получена с единичным коэффициентом усиления на низких частотах, то высокочастотная характеристика может быть получена просто с помощью разностного усилителя, подключенного между входом и выходом низкочастотной схемы [12]. Это возможно благодаря свойству постоянного напряжения, уравнение (1). Если низкочастотная характеристика реализована с чистой инверсией фазы, как на рис. 9, то для восстановления высокочастотной характеристики можно использовать суммирующий усилитель, как показано в нижней части рисунка [9, с. 243]. Описанные методы синтеза применимы ко всем функциям, рассмотренным ранее. Все полиномы могут быть разбиты на коэффициенты полиномов первого и второго порядка, а функции отклика затем могут быть синтезированы каскадно с использованием методов из [10] и [11]. Активные цепи первого порядка тривиальны. В простейшем синтезе используются две взаимодополняющие пассивные RC-цепи, при необходимости с буферными усилителями для устранения ошибок нагрузки. Оконечные пассивные цепи
  2. Третий порядок: Простейшими удовлетворительными полиномами являются Для стабильности “a” должно быть больше единицы, а “b” должно быть больше “a+1”: Если |G(w0)| снова выбрано равным единице, отношение между a и 6 фиксируется на a = (2-√ 3)(b--1). Затем можно найти значение “b” , которое будет достаточно высоким, чтобы пик отклика не превышал, скажем, 3 дБ. Функция Gl(sn) выше была исследована с помощью компьютера для различных комбинаций a и b. Графики отклика для b = 21 и a = 5,36 показаны на рис. 8. Общие соображения: Ограничение |G(wo)| на значением единицы не было произвольным. Этот выбор согласуется с желанием избежать разницы фаз при переходе почти в 180°, как объяснялось ранее. При: wo, Re(G) = +1/2 для всех симметричных функций постоянного напряжения. Поэтому выбор |G(wo)| = 1 дает 2G = +-60°, или разность фаз 120° при переходе. |G(w0)| не может быть уменьшен намного ниже единицы без образования больших пиков в полосе пропускания. Ограничение пика полосы пропускания также основано на рациональных критериях. (Форма полярных графиков показывает, что пик должен присутствовать во всех откликах цепи постоянного напряжения, кроме первого порядка). Если один драйвер имеет большой избыточный вход, передача постоянного напряжения требует, чтобы ко второму драйверу была приложена большая составляющая вне фазы. Таким образом, большие пики создают нежелательно большие разности фаз на частоте пика. Не менее важными факторами являются мощность усилителей и номинальная мощность драйверов, которые должны быть увеличены пропорционально количеству пиков.
  3. Асимметричные цепи Взяв обычные хараактеристики НЧ части фильтра рис. 3 и 4, легко получить соответствующие характеристики ВЧ части, которые обеспечивают постоянную передачу напряжения, как из полиномиальных функций, так и из полярных графиков. Новые пары функций представлены на рис. 5 и 6. Обратите внимание на идентичные формы полярных графиков для каждой пары функций. В обоих случаях конечный наклон функции высоких частот составляет всего 6 дБ на октаву. Это обусловлено первоначальным выбором Gl, который выходит из точки +1,0 под углом -90° и, таким образом, вынуждает Gh выходить из начала координат под углом +90°. Симметричные цепи Второй порядок: Простейшие полиномиальные функции, удовлетворяющие уравнениям (1) и (2) и дающие отклики второго порядка (12 дБ на октаву), следующие Для стабильности коэффициент «а» должен быть больше единицы. Фактический выбор a определяет величину пика в отклике и разность фаз на кроссовере. Выбор a = 2+√ 3 дает |G(wo)| = 1.0, с разностью фаз 120° между двумя выходами и приблизительно 2 дБ пика в полосе пропускания каждого отклика. Графики этих функций приведены на рис. 7.
  4. Цепи с постоянным сопротивлением приводят к откликам Баттерворта (максимально плоским) для всех случаев. Важной особенностью представленных пар полиномиальных функций является то, что во всех случаях, Именно это свойство приводит к симметрии относительно частот кроссовера для пар графиков передачи и симметрия относительно реальной оси для пар полярных графиков. Другой важной особенностью полиномиальных выражений является то, что числители состоят только из одного члена. Эта особенность характерна для обычных активных кроссоверов. Числитель с одним членом является результатом выбора наиболее простой и экономичной схемы, которая дает заданную крутизну среза. Это также является причиной неспособности обычных цепей высокого порядка обеспечить постоянную передачу напряжения, как можно показать путем сложения низкочастотной и высокочастотной функций передачи напряжения для каждой цепи для получения общего отклика. Только обычная конструкция первого порядка обеспечивает постоянную передачу напряжения. В конструкциях более высокого порядка нехватка числителя приводит к тому, что общий отклик не является единым. Цепь второго порядка имеет ноль на кроссовере; цепь третьего порядка, хотя и имеет постоянную общую амплитуду, демонстрирует полное изменение фазы при переходе. Отклики более высокого порядка, которые имеют более крутой срез традиционно желательны, поскольку более быстрое затухание за пределами полосы пропускания облегчает требования к полосе пропускания драйверов. Поэтому представляет интерес исследовать, можно ли получить крутые склоны среза при передаче постоянного напряжения, и изучить степень, в которой требования к производительности драйвера могут быть таким образом облегчены ЦЕПИ С ПОСТОЯННЫМ НАПРЯЖЕНИЕМ ПЕРЕДАЧИ Условием постоянной передачи напряжения является то, что полиномиальные функции передачи напряжения цепи в сумме равны единице, уравнение (1). Простейшим способом достижения этого является выбор полинома знаменателя, общего для обеих передаточных функций, а затем разделение членов полинома знаменателя между двумя числителями. Порядок полинома знаменателя и распределение членов между числителями определяют наклоны среза двух передаточных функций. Если требуются симметричные отклики с одинаковыми наклонами среза, то уравнение (2) также должно быть выполнено. Это достигается путем выбора полинома со знаменателем, имеющего симметричные коэффициенты (c0 = cn, c1 = c n-1, и т.д.) и разделив эти коэффициенты поровну между двумя числителями. Влияние этих требований на полярные графики передаточных функций весьма интересно. Легко показать, что если выполняется уравнение (1), то полярные графики Gl и Gh, будут идентичны по форме и размеру (геометрическое условие конгруэнтности) и будут лежать в положениях так, что если один из них повернуть на 180° относительно точки +1/2, 0 в плоскости графика, то она совпадет с другой. Обратите внимание, что это условие выполняется на рис. 2, где два графика представляют собой одинаковые полукруги, но не на рис. 3 или Рис. 4, Как видно из предыдущего раздела, условие, налагаемое (2) приводит к тому, что полярные графики передаточных функций симметричны друг другу относительно вещественной оси. Таким образом, полярные графики симметричных функций постоянного напряжения должны иметь как конгруэнтные формы, так и симметрию по отношению друг к другу относительно реальной оси. Эти одновременные условия создают симметрию относительно линии Re = +1/2 для каждого графика функции.
  5. динамиков. Рассматривая проблему эквализации отдельно, можно спроектировать кроссоверы, имеющие универсальное применение. Если выбранный набор драйверов не может быть выровнен для использования с цепью постоянного напряжения, то эти драйверы не дадут идеальных результатов при любой конструкции цепи. ОБЫЧНЫЙ ОТКЛИК СХЕМЫ Способность обычных кроссоверов обеспечивать постоянную передачу напряжения определяется путем исследования характеристик передачи напряжения этих цепей. Поскольку обычные графики зависимости амплитуды от частоты не содержат важной информации о фазе, они дополнены функциями передачи напряжения в полиномиальной форме и полярными графиками этих функций. Функции низких частот обозначаются Gl, а функции высоких частот - Gh. Форма этих функций упрощена путем принятия нормализованной частотной переменной sn = s/w0, w0 - номинальная частота кроссовера. На рис. 2 представлены полиномиальные функции и графики для кроссоверных цепей первого порядка (6 дБ на октаву) с постоянным сопротивлением. Та же информация представлена на рис. 3 для цепей второго порядка (12 дБ на октаву) и на рис. 4 для цепей третьего порядка (18 дБ на октаву).
  6. Второе - амплитудные и фазовые характеристики динамиков в зависимости от частоты идентичны, (хотя и не обязательно гладко) в области пересечения. Практическое значение этих предположений будет обсуждаться в ближайшее время. ПЕРЕДАЧА ПОСТОЯННОГО НАПРЯЖЕНИЯ Проблема проектирования кроссоверной схемы в простейшей форме показана на рис. 1. На рис. 1а один драйвер подключен к источнику напряжения; на рис. 1б два драйвера, идентичные первому, работают от одного источника напряжения через кроссовер. В выражениях передачи верхние черточки обозначают векторные величины, p - (синусоидальное) звуковое давление на фиксированном расстоянии от излучателя(ей), e - (синусоидальное) управляющее напряжение, k - константа чувствительности, а F(w) - амплитудная и фазовая характеристики указанных излучателей. На рис. 1c показано, что система рис. 1b будет излучать такое же звуковое давление, как и одиночный динамик рис. 1a, если кроссоверная цепь удовлетворяет условию, что векторная сумма отдельных передаточных функций напряжения равна единице. Для общего случая кроссоверной цепи, имеющей полиномиальную форму и полярные графики этих функций. низкочастотные и высокочастотные передаточные функции напряжения, определяемые Gl(s) и Gh(s), соответственно, требование заключается в том, чтобы Уравнение 1. Подчеркнем, что уравнение (1) является векторной зависимостью. Сумма передаточных функций напряжения цепи должна быть равна единице по амплитуде и нулю по фазе для всех значений частоты. Это условие единства общей передачи напряжения было также выведено из соображений переходных процессов в более ранней работе Эшли [9]. На практике общая передача напряжения может иметь любую постоянную амплитуду. Хотя для удобства анализа будет использоваться единица, полученный критерий эффективности в дальнейшем будет называться передачей постоянного напряжения, а цепи, удовлетворяющие этому критерию, кроссоверными цепями постоянного напряжения. При выводе формулы (1) предполагается два условия: что динамики установлены близко друг к другу и что они идентичны. Первое условие было сделано исключительно для упрощения вывода, это единственный способ обеспечить равномерное сложение выходов динамиков как для прямого, так и для отраженного звука во всей зоне прослушивания. Если используются большие расстояния между драйверами, то идеального решения проблемы проектирования кроссовера не существует; следовательно, любая попытка улучшить проектирование кроссоверной цепи должна сопровождаться усилиями по достижению предполагаемого близкого расстояния между драйверами. На практике некоторое расстояние между драйверами неизбежно, и возникающая разница в длине пути вносит нежелательный фазовый сдвиг в акустическое дополнение выходов драйверов. Наиболее серьезные последствия возникают для сигналов одинаковой амплитуды и разности фаз почти 180°, поскольку сложение в этом случае очень чувствительно к небольшим дополнительным фазовым сдвигам. Поэтому любой выбор при проектировании кроссоверов должен быть в пользу решения, которое дает наименьшую разницу фаз между выходами при сравнимых амплитудах. Второе условие, на первый взгляд, ограничивает возможность использования полученного критерия эффективности, поскольку драйверы, используемые в системах с несколькими драйверами, редко бывают одинаковыми и часто совершенно разных типов. Однако это условие удовлетворительно выполняется многими практическими комбинациями драйверов, например, двумя прямыми излучателями, каждый из которых работает в своем поршневом диапазоне. Если различия в передаточных характеристиках двух динамиков могут быть установлены и представлены простой моделью, можно разработать корректирующие цепи для использования с одним или обоими динамиками для получения требуемого сходства отклика. Разделительная цепь плюс эквалайзеры составляют правильную "кроссоверную цепь" для данного конкретного набора
  7. Richard H. Small Проектирование кроссоверной цепи постоянного напряжения РИЧАРД Х. СМОЛЛ Факультет электротехники, Сиднейский университет, Сидней, Северная Шотландия, Австралия Рассмотрение электроакустического поведения распространенных динамиков громкоговорителей приводит к тому, что общее требование к конструкции кроссоверной цепи - постоянная полная передача напряжения. Обычные пассивные цепи удовлетворяют этому требованию, только если крутизна среза ограничена 6 дБ на октаву. Активные кроссоверные цепи с более крутыми склонами среза могут также могут быть разработаны для выполнения этого требования, но такие цепи не обеспечивают быстрого переход от одного динамика к другому. Независимо от выбранной цепи, используемые динамики должны иметь полезный частотный диапазон, перекрывающийся примерно на четыре октавы. ВВЕДЕНИЕ Большинство высококачественных акустических систем, используемых сегодня, относятся к многодрайверному типу. Эти системы содержат два или более динамиков, каждый из которых предназначен для оптимальной работы в ограниченной части частотного диапазона системы. Одним из преимуществ такого подхода является то, что полезный диапазон частот системы может превышать диапазон частот наилучшего широкополосного динамика. Во-вторых, путем разделения спектр сигнала между несколькими динамиками, можно уменьшить общие искажения модуляции [1] системы. Важнейшей частью любой многодрайверной акустической системы является: кроссовер , также часто называемый разделительными фильтрами. Эта схема отвечает за разделение воспроизводимого сигнала на два или более отдельных сигнала на основе частоты; каждый динамик получает определенный диапазон, для воспроизведения которого он предназначен. В настоящее время широко используются две разновидности кроссоверных схем. Одна из них - пассивная цепь, которая полностью состоит из пассивных компонентов и подключается между одним усилителем мощности и набором динамиков {2], [3]. Другая - активная схема, или электронный кроссовер [4], который подключается перед набором усилителей мощности, по одному на каждый динамик. Традиционные стандарты производительности кроссоверных схем основаны на простых электрических принципах, без учета электроакустических характеристик динамиков. Наиболее распространенным и знакомым критерием является критерий постоянной полной передачи мощности, который лежит в основе конструкций пассивных цепей с постоянным сопротивлением [5]. Общий критерий разделения электрического сигнала в системе с несколькими динамиками должен учитывать передаточные характеристики динамиков и механизм рекомбинации отдельных акустических выходов. Хотя конкретные передаточные характеристики драйверов зависят от их конструкции, одной важной особенностью, характерной для всех типов драйверов, является линейная стационарная зависимость амплитуды между напряжением питания и излучаемым звуковым давлением [6], [7]. Суммарная мощность двух динамиков, излучающих вместе, определяется путем суперпозиции, т.е. полное звуковое давление в любой точке является линейной суммой двух отдельно излучаемых звуковых давлений,учитывая разность фаз [8]. Чтобы упростить вывод общепринятого критерия эффективности работы схемы кроссовера, сделаны два предположения. Первое заключается в том, что динамики установлены так близко друг к другу, что длина пути к любой точке среды отличается менее чем на длину волны на частоте пересечения.
  8. NJM4556 при хорошем питании также весьма неплохо. Слушал на Косс4аа, 350 Ом.
  9. А если применить 6c19п ? или 6н5с
  10. Выходной транс обязателен тут?
  11. Я вот наоборот прямонакальные триоды на входе нравятся, а на выходе пентоды хороши. И раскачивать их легче и с шириками тоже отлично края АЧХ выравнивает.. Триоды прямонакалы, на выход тоже можно, но они, хорошие, дороговаты (часто, очень дороги).
  12. Сансуй подобное видимо делала в 70 е года
  13. Так и толк от ГМ-70 сомнителен. Если риск питания напрмую от сети без трансформатора оправдывется звучанием, то в этом случае -увы.
  14. Я получил приличный звук перемотав выходник на КИНАП У-90, на 6п3с, они и сейчас стоят как одна лампа ГМ-70.
  15. Будьте готовы. К разочарованиям. НЕ зря ГМ-70, уходят НОС, не бу, по 50 евро, а хорошие прямонакалы -под 1000 и много более, за щтуку.
  16. Как то сделал ум на ГМ 70, звук хреноватый. Судя по комплектующим, затрат много, а толку будет боюсь, мало :(( Звук был такого же плана как на китайском МА-845, с 845 ми лампами_, лампы громадные, понтов много, а звук мутный. Рядом оказался нмецкий на ЕЛ84, переиграл, на раз. КУпил помню за 100 евро, сейчас уже такие продают за 700.
  17. ТАНы, это ужас, может правда мне современные попадались.
  18. В ТДА 1541 в основе не Р-2Р матрица а токовые делители.
  19. Обвязка, блок питания итп, не менее влияет, чем м- сх цап. На одной элементной базе и звук будет сходным, с небольшими вариациями. Слушал тут восхваляемые некторыми видео хай фай ВХС, ну звук аналогичен кассетникам тех же 90-х, по большом у счету. Элементная база та же .
  20. Ну как это , есть лидеры, например ЕМТ за 25 тыс долл, и корректоры также есть знаменитые. Уж никак тут не просто дело вкуса, если сравнивать с дешевыми моделями.
  21. Мифы плодите? НЕт таких законов физики где для 4 ватт усиления нужен выходник в 50 кГ а межблочник толщиной в руку. Вы то лично так же делаете, или беспардонно нарушаете законы физики ? :) Опытные результаты изменения звука при гигантизме, да, можно потом завуалировать законами физики.
  22. А я полюбил Анну Герман, старые ВИА, классику. И стало скучно, неинтересно слушать поп, рок, тот же пинк флойд, и ласковый май. Просто смешно так же как наблюдать за пыжащимися изробразить важность своих дел, детишками в песочнице.
  23. По мне так то что в детском садике, нравилось мне вот почему то сейчас нет, не нравится :)) И это не потому что мне важно чье то мнение.
×
×
  • Create New...